FASTER NYLON PARTS – A New Age for 3D Printing

A RAPIDMADE WHITE PAPER

By Mark Eaton

Getting parts on demand has been a manufacturer’s dream for many years. Since 2005, see M. Park, UNSW article, there have been cries from the 3D printing industry that additive technology would replace the need for injection mold tooling, that it would eliminate the need for machining, that casting would become obsolete. Finally, that dream is becoming a reality.

While there have been success stories such as the use of Stratasys Ultem for aerospace parts and selective laser sintering (SLS) nylon for automotive parts, until today, these components have all had restrictions on where and how they could be used. One of the biggest drivers for this has been the speed and the part cost.  Siemens, according to a recent article in Plastics Today, is using 3D printed fire, smoke and toxicity-compliant polymers to replace parts in trams, and they cite part availability as being the primary driver. The US Marines have recently experimented with printing replacement Humvee parts in the field. What all these examples have in common is they are limited in scope by the 3D printing technology restrictions. While the FDM process eliminates tooling, it is still 100x slower than injection molding or machining, and while SLS material prices have been reduced, they are still 10x more expensive than injection molding or nylon bar stock prices. So, the extent to which these older 3D processes can be deployed is still limited by cost and speed.

                                                                 Photo Credit: HP

                                                                 Photo Credit: HP

 

This is beginning to change. A new breed of additive manufacturers is arriving on the market who are focused on truly using 3D printing to create production parts at costs comparable to injection molding and machining prices. These “new age” additive manufacturing companies combine faster printing technology with engineering resources to convert and certify part performance. They have integrated quality systems to ensure material, process and part conformity. And they offer parts at competitive prices compared to injection molding or machining costs without the need for tooling, set-up costs or inventory carrying costs. An example of one company taking advantage of this new age in additive manufacturing is Daimler, cited in a recent Reuters report, who has announced it will start offering plastic replacement parts printed at local service centers from a library of 3D files.

Driver’s armrest is 3D-printed from FST-compliant thermoplastic resin.Picture credit: PlasticsToday.com

Driver’s armrest is 3D-printed from FST-compliant thermoplastic resin.Picture credit: PlasticsToday.com

 

As an executive board member in the additive manufacturing community, I recently got to profile one such Portland-based 3D printing company, RapidMade. After 6 years developing prototyping, tooling and engineering services to support 3D printing, this company is reinventing itself to use the new breed of additive technology being offered by companies such as Hewlett Packard and Carbon 3D. These companies have developed much faster 3D printing technologies that use faster curing, less expensive materials with all the properties of traditional polymers. The new HP MJF is being showcased by RapidMade as part of its expansion in 2017. With speeds that are 10x faster than current SLS technology and material prices equivalent to injection molded nylon or machined bar stock, RapidMade can now offer its customers a wide range of new and replacement part solutions. Where precision tolerances are required, the company uses automated machining centers linked with the printers to provide finishing operations.

                                                                Photo Credit: HP

                                                                Photo Credit: HP

 

Without the need for tooling, customers can now order parts to print using their 3D library or one provided by the service provider. The shorter printing cycle times mean that it is no longer necessary to hold more than 1-2 days’ inventory for quick use parts, and less frequently used parts can be ordered as needed with zero inventory requirements. For very low order quantities (less than 10 parts), it has always generally been cheaper to 3D print versus using traditional manufacturing. With the lower cost breakeven point of these new age 3D printing technologies, minimum order quantities (MOQ) of 500 or 1,000 will be converted to printing versus injection molding or machining. For customers already using SLS technology, they will see an immediate cost and turnaround benefit from switching to this new breed of 3D printing technologies.

The benefit of these “new age” additive manufacturing companies like RapidMade is being immediately felt by the machinery manufacturers and end users of such equipment. There is a significant cost benefit in current supply chains, PWC Strategy& estimates there will be a 20% gain in TCO (total cost of ownership) from 3D printing replacement parts. It is estimated 70-80% of that can be delivered to the end users when they engage with a “new age” additive manufacturing company. Lower prices for spare and replacement parts are possible with piece of mind that the part has been certified for use. No longer are machinery manufacturers tied to traditional injection molders who retain tooling that cannot be easily moved. Parts produced offshore can now be re-shored without needing to recreate tooling. PWC Strategy& predicts German spare parts manufacturers will derive $3Bn in benefit from adopting 3D printing. Additive manufacturing by its nature is a non-labor intensive process, and the new breed of technologies produces 10x the number of parts in the same time lowering the overhead cost per part and making larger MOQ more attractive. Companies like RapidMade retain digital libraries and ship direct, on demand parts in quantities of 1 to 1,000 in less than 24 hours. They do this by not only having faster 3D printing technologies but also using automated transaction systems, integrated engineering and lean techniques to optimize printing uptime.

                                                                Photo Credit: PwC

                                                                Photo Credit: PwC

 

Whether it is Daimler, deciding to print plastic parts locally to save warehouse, shipping and logistics costs or Siemens citing the increased ability to service multiple customers with parts on demand, times are changing for the benefit of producers and end users. And to support the changing demands, these companies are turning to the ‘new age’ additive manufacturers who, in turn, are enabling US companies to re-shore production, improve turnaround time and lower part costs. If you have dismissed 3D printing in the past, it might be time to take another look.

Come join us for a unique way to celebrate St. Patrick's Day, next Friday, March 17...

Lunch Meeting
  
The Current and Future State of Advanced and Additive Manufacturing

Advanced and Additive Manufacturing (AM) has seen an explosion in investment, growth, and development in the last decade. For metals alone, AM means a shift from mold-based component concepts and the constraints that go with them to rapid iteration, development of ideas with full geometric freedom. Advantages include faster processing times, lower-cost components, and a level of design freedom that is so far unheard of. The main forces behind this momentum include the automotive, medical technology, and aerospace industries. Come hear a short presentation on the current and future state of this amazing technology. 

Our Speaker: 
Kristofer Beem- Business Development Director. Kristofer has a degree in Entrepreneurial Business and is one of the first four members of RapidMade, Inc. He has a combination of ten years of sales and marketing experience in B2B and B2C environments. His working knowledge of 3D printing and additive technologies enable him to quickly work with clients in a collaborative manner. In the past five years, he has built a strong client base of almost 400, including several Fortune 500 clients, and globally renowned brands. 
 
What: The Current and Future State of Advanced and Additive Manufacturing When: Friday March 17th, 2017 11:30 – Doors open, Lunch – order from Sidebar menu 12:00 – 1:00 Presentation

Where: Sidebar – 3901 N. Williams Ave  

Cost:  Free entrance, order lunch off Sidebar menu RSVP: Space is limited. 

Posted
AuthorRenee Eaton

To create or improve products, engineers rely on a number of proven approaches which include CAD Work, 3D Design, Industrial Design, Technical Analysis, Reverse Engineering, and Technical Documentation.  Learn more about how RapidMade can help.

Write here...

CAD Work

  • 3D print preparation
  • 2D to 3D conversions
  • Design for manufacturing conversions

    3D Design

    • Contract design work
    • Custom design
    • Product design
    • Conceptual design
    • Proof-of-concept design
    • Design for manufacturing

    Industrial Design

    • Aesthetics
    • Use-ability
    • Ergonomics
    • Anthropometrics
    • Research

    Technical Analysis

    • Stress analysis
    • Motor/actuator sizing and selection

    Reverse Engineering

    • File Conversions
    • Existing part to 3D CAD
    • 3D scan to parametric CAD model

    Technical Documentation

    • Manufacturing drawings
    • Machine layouts

    Training

    • User manuals
    • On-site installation

    Before starting RapidMade, Renee Eaton worked in higher education teaching management classes and career counseling at Oregon universities for almost a decade.  While she loves the world of 3D printing, engineering, product design and additive manufacturing, she sometimes misses working with college students.

    Last week, she had an opportunity to return to the classroom.  Each year, at her youngest daughter's school, St. Mary's College of Maryland, Renee presents an Interviewing Skills Workshop to its Senior class.  In addition to giving back to the community, Renee gets  to practice her own interviewing skills - which she put to good use this past year.  An added bonus was the event's timing which coincided with the horrendous Portland snow and ice storms.  She's calling it Karma.

     

     

    Braving the ice and rain, RapidMade joined other manufacturers and suppliers at this week's Northwest Food and Beverage Manufacturers Expo and Conference.  The Expo is a familiar event for RapidMade's management team which has more than 40 years of experience in food processing and material handling as an Original Equipment Manufacturer (OEM), engineer, manufacturer and 3D printer.

    OEMs turn to RapidMade for our engineering design services.  Once equipment is operational, using our engineering staff and additive manufacturing allows food processors to 3D scan, reverse engineer and produce components - either using 3D printing or traditional manufacturing.

    Held annually, the Expo offers "leading-edge educational sessions with the largest regional trade show in the industry."

    RapidMade Accelerates Pace and Elevates Quality of Product Launch

    Injection Molding Case Study

    3D Printing, or Rapid Prototyping as it is also known, is a much faster and cost effective solution for testing and perfecting digital designs. Its ability to fabricate parts overnight without any direct labor, programming or tooling means 3D printing technologies carry many advantages over traditional technologies like injection molding for short turns and small-batch production.

     Sometimes 3D printing only goes so far when developing and manufacturing products in their early stages. In those instances, Rapid Injection Molding can take products to the finish line.

    An American-made LED light bulb manufacturer engineered a version that was bigger and brighter than its competition.  The company quickly learned that RapidMade's injection molding expertise could test, validate and even manufacture its light bulbs in ways that 3D Printing simply could not match.

    RapidMade accelerates the typical injection molding process by providing a short cut between prototyping and production tooling. After the rapid prototyping client finalizes its product for injection molding, RapidMade creates a cheaper and better solution by making pre-final tooling out of aluminum. This option allows customers get to market sooner than other injection mold processes and helps gain customer feedback to improve products. Getting a product to market sooner generates more revenue to invest in further product development and long-term tooling. 

     Material

    Since the customer didn't know what the final material of the bulb should be, cutting the mold and testing multiple materials, including different grades of ABS and Polycarbonate, helped pinpoint the final material and even helped estimate eventual mass manufacturing costs. Additionally, electronics products must go through rigorous UL testing to ensure consumer safety before the product can be sold in stores.

    Color and clarity are other traits vital to the lighting industry.  Because 3D printers must run manufacturing-grade material that is unadulterated, optimizing these characteristics can be difficult. With injection molding, however, one can custom blend different clear and opaque pigments with clear plastic to prototype different levels of clarity and color. So the company could test very specific color profiles to perfect its formula in the final product.

     Finish

    Finish is extremely important when working with lighting, as well as other consumer products. A matte finish diffuses light at a very different rate than a polished one. Due to the layered nature, inherent in the 3D printing process, even the highest detail machines will have some level of surface striation. Additionally, most filament or powder technologies will have a very rough finish beyond the layer lines. Achieving custom finishes requires polishing, sanding, and painting of each individual unit, making it is extremely labor intensive and expensive.

    Alternatively, injection molding shoots molten plastic into a cavity which picks up the texture of that cavity. That means one only needs to finish a mold once to get repetitive shots of that finish. And molds can be polished and textured to prototype a variety of finishes before settling on the desired one.

    Volume

    A light bulb is a relatively low-cost consumer good. These goods are meant to be sold in large volume at low cost. Tooling to produce those volumes inexpensively enough can take months to make and require high upfront investment. Many businesses are interested in small and medium-batch options that are more cost effective and higher quality than 3D printing to excite investors, test markets and stoke demand. 

     The company secured a prototyping option with relatively little upfront investment that served as a bridge tool to get actual product out into the marketplace. Aside from the aforementioned quality concerns, this could not have been cost effectively achieved with 3D printing; one cannot sell a light bulb where the housings cost $38 to the manufacturer. Creating large volumes of parts on a 3D Printer can also take much longer than injection molding, making it harder to fill orders. Injection Molding can really provide exceptional value to early-stage manufacturers when producing runs of hundreds or thousands of parts for low cost very quickly.

     

    As you plan last-minute expenditures for 2016, please remember RapidMade can complete most projects in days, not weeks.  

    We offer: 

    • Rapid prototyping & design engineering services

    • Low-volume production: 3D-printed parts, tools, patterns & molds

    • Reproduced obsolete parts with reverse engineering & 3D scanning as needed

    • To-scale architectural, sales & training models; cutaways showing internal components are optional

    • Promotional items including customized ornaments, awards & business card holders

    Just in time for the Holidays, we are introducing our new Thermoforming technology for your Prototyping & finished product needs.

    Then let us help you ring in the New Year!  We've expanded our Engineering Services to include:

    • Product design & integration

    • Standard equipment customization

    • Training & user manual development

    • On-site installation & training

    • Specialized tooling & part design/manufacture

    It's been a great year, and we have our wonderful customers to thank for it.

    Happy Holidays! 

    The RapidMade Team

      

    Our friends at Direct Dimensions in Owings Mills, Maryland, will be "creating a 3D CAD model" of the Roberto Clemente Bridge in our hometown of Pittsburgh, Pennsylvania.  The resulting files will then be used to create 3D prints of the bridge for an upcoming RAPID + TCT show being held in Pittsburgh in May.

    Pittsburgh, long recognized for its sports accomplishments, is becoming well known as a Center of Excellence in Additive Manufacturing as well.



     

    On Thursday, October 20, the University of Portland will be hosting its Operations & Tech Management Symposium from 4 - 7 PM in Shiley Atrium.

    Join us for thought-provoking discussion led by industry leaders followed by networking reception. Meet the speakers and connect with movers and shakers in the operations and technology management field.
    Don’t miss this inaugural event!

    • KEYNOTE SPEAKER – Fred Pond, former CIO Columbia Sportswear
    • PANELISTS –
      Chris DeGallier, CGD Owner; Greg Martin, Knowledge Universe CIO; Jimmy Godard, Bank of America VP Senior Change; Renee Eaton, Rapidmade CEO; Rick McClain, Milwaukee Electronics COO, Derek Weiss, VP, Deputy CIO Cambia Health Solutions and Wilson Zorn, Adidas Sr. Enterprise Architect.

    Agenda:

    • Registration/Welcome
    • Keynote Speaker – Fred Pond, CIO Columbia Sportswear
    • Guest Speaker – Jackie Baretta, CIO Willamette University
    • Panel Discussion Moderated by: Lisa McCaffrey (see “Speakers” for panel bios)
    • Networking Reception

    Event Details:

    • When: Thursday, October 20th 2016, 4-7PM
    • Where:  University of Portland – Shiley Hall (Atrium)
    • Parking: FREE (main campus parking lot)
    • General Admission: $35 (includes “Primal Teams” book by Jackie Baretta, reception appetizers and drink)
    • Student Admission: $15 (includes “Primal Teams” book by Jackie Baretta, reception appetizers and drink)