Congratulations to Innovarai and Madorra Medical who are among Portland Business Journal's 2017 Small Business & Innovation awardees!  Their achievements will be recognized and their products showcased on November 1st from 5:30 p.m. - 7:30 p.m. at the Portland Hilton Hotel.

Rapid prototyping and low-volume production, made possible through 3D printing (additive manufacturing), are lowering the barriers to entry for entrepreneurs and start ups.  These advanced manufacturing technologies lower costs, reduce lead times, and optimize designs, making product launches more affordable and timely.

The truck is reserved; the boxes are being packed, and we are counting down the hours - not days - until our move this Friday.  Just a reminder to customers with pending quotes, orders and deliveries, we will be working through Thursday (tomorrow) and packing tomorrow night for Friday's move.  If necessary, we will continue to run rush orders at our old location to ensure delivery dates are met.  Otherwise, we plan to move and install all equipment this weekend with a rolling start up on Monday.

If you have a concern about a specific 3D printing or engineering and design job, please don't hesitate to call our office - or better yet, email us, and we will respond - assuming we are not driving a large truck on I5 South.

Wish us luck!

In a mere 66 hours (but who's counting), our HP Jet Fusion will be delivered to our new location. If you are as excited about our new 3D printer as we are, why not see what it can do for you?  Fill out the Quick Quote and get in the queue.  Try the latest breakthrough in Additive Manufacturing... the 

 

“commercial 3D printing system that delivers superior quality physical parts up to 10 times faster and at half the cost of current 3D print systems.”

Look for updates and pictures.

Growing up in Pittsburgh, if you weren't directly connected to the Steel industry, you complained about the rotten egg smell and pollution.  But when the industrial giants went silent in the 70s and 80s, the complaints shifted dramatically to the economic tragedy that was unfolding - the flight of life-long residents and well-paying jobs.   Rhetoric from the recent election aside, Pittsburgh's manufacturing base is both alive and well...

The Pittsburgh Regional Alliance (PRA) recently reported that in 2016 the manufacturing sector accounted for the most investment dollars ($6.1 billion), the most deals (50 companies expanding or relocating), and the most new and retained jobs (3,667).

But as we've continued to see, the type and number of jobs that have been created don't resemble those of the steel-era in any way.

“Manufacturing is the most active sector in southwestern Pennsylvania,” explains PRA President David Ruppersberger. “But as technology and automation continue to transform this legacy sector, the reality is that manufacturing facilities will be smaller-footprint, high-efficiency environments where fewer workers, with advanced skills including STEM proficiency, will produce more goods. This is a trend that won’t reverse at any time in the foreseeable future.”

Hearing of Pittsburgh's adoption of additive manufacturing and other advanced technologies is encouraging if the resulting economic turnaround benefits the greater community.

 

FASTER NYLON PARTS – A New Age for 3D Printing

A RAPIDMADE WHITE PAPER

By Mark Eaton

Getting parts on demand has been a manufacturer’s dream for many years. Since 2005, see M. Park, UNSW article, there have been cries from the 3D printing industry that additive technology would replace the need for injection mold tooling, that it would eliminate the need for machining, that casting would become obsolete. Finally, that dream is becoming a reality.

While there have been success stories such as the use of Stratasys Ultem for aerospace parts and selective laser sintering (SLS) nylon for automotive parts, until today, these components have all had restrictions on where and how they could be used. One of the biggest drivers for this has been the speed and the part cost.  Siemens, according to a recent article in Plastics Today, is using 3D printed fire, smoke and toxicity-compliant polymers to replace parts in trams, and they cite part availability as being the primary driver. The US Marines have recently experimented with printing replacement Humvee parts in the field. What all these examples have in common is they are limited in scope by the 3D printing technology restrictions. While the FDM process eliminates tooling, it is still 100x slower than injection molding or machining, and while SLS material prices have been reduced, they are still 10x more expensive than injection molding or nylon bar stock prices. So, the extent to which these older 3D processes can be deployed is still limited by cost and speed.

                                                                 Photo Credit: HP

                                                                 Photo Credit: HP

 

This is beginning to change. A new breed of additive manufacturers is arriving on the market who are focused on truly using 3D printing to create production parts at costs comparable to injection molding and machining prices. These “new age” additive manufacturing companies combine faster printing technology with engineering resources to convert and certify part performance. They have integrated quality systems to ensure material, process and part conformity. And they offer parts at competitive prices compared to injection molding or machining costs without the need for tooling, set-up costs or inventory carrying costs. An example of one company taking advantage of this new age in additive manufacturing is Daimler, cited in a recent Reuters report, who has announced it will start offering plastic replacement parts printed at local service centers from a library of 3D files.

Driver’s armrest is 3D-printed from FST-compliant thermoplastic resin.  Picture credit: PlasticsToday.com

Driver’s armrest is 3D-printed from FST-compliant thermoplastic resin.Picture credit: PlasticsToday.com

 

As an executive board member in the additive manufacturing community, I recently got to profile one such Portland-based 3D printing company, RapidMade. After 6 years developing prototyping, tooling and engineering services to support 3D printing, this company is reinventing itself to use the new breed of additive technology being offered by companies such as Hewlett Packard and Carbon 3D. These companies have developed much faster 3D printing technologies that use faster curing, less expensive materials with all the properties of traditional polymers. The new HP MJF is being showcased by RapidMade as part of its expansion in 2017. With speeds that are 10x faster than current SLS technology and material prices equivalent to injection molded nylon or machined bar stock, RapidMade can now offer its customers a wide range of new and replacement part solutions. Where precision tolerances are required, the company uses automated machining centers linked with the printers to provide finishing operations.

                                                                Photo Credit: HP

                                                                Photo Credit: HP

 

Without the need for tooling, customers can now order parts to print using their 3D library or one provided by the service provider. The shorter printing cycle times mean that it is no longer necessary to hold more than 1-2 days’ inventory for quick use parts, and less frequently used parts can be ordered as needed with zero inventory requirements. For very low order quantities (less than 10 parts), it has always generally been cheaper to 3D print versus using traditional manufacturing. With the lower cost breakeven point of these new age 3D printing technologies, minimum order quantities (MOQ) of 500 or 1,000 will be converted to printing versus injection molding or machining. For customers already using SLS technology, they will see an immediate cost and turnaround benefit from switching to this new breed of 3D printing technologies.

The benefit of these “new age” additive manufacturing companies like RapidMade is being immediately felt by the machinery manufacturers and end users of such equipment. There is a significant cost benefit in current supply chains, PWC Strategy& estimates there will be a 20% gain in TCO (total cost of ownership) from 3D printing replacement parts. It is estimated 70-80% of that can be delivered to the end users when they engage with a “new age” additive manufacturing company. Lower prices for spare and replacement parts are possible with piece of mind that the part has been certified for use. No longer are machinery manufacturers tied to traditional injection molders who retain tooling that cannot be easily moved. Parts produced offshore can now be re-shored without needing to recreate tooling. PWC Strategy& predicts German spare parts manufacturers will derive $3Bn in benefit from adopting 3D printing. Additive manufacturing by its nature is a non-labor intensive process, and the new breed of technologies produces 10x the number of parts in the same time lowering the overhead cost per part and making larger MOQ more attractive. Companies like RapidMade retain digital libraries and ship direct, on demand parts in quantities of 1 to 1,000 in less than 24 hours. They do this by not only having faster 3D printing technologies but also using automated transaction systems, integrated engineering and lean techniques to optimize printing uptime.

                                                                Photo Credit: PwC

                                                                Photo Credit: PwC

 

Whether it is Daimler, deciding to print plastic parts locally to save warehouse, shipping and logistics costs or Siemens citing the increased ability to service multiple customers with parts on demand, times are changing for the benefit of producers and end users. And to support the changing demands, these companies are turning to the ‘new age’ additive manufacturers who, in turn, are enabling US companies to re-shore production, improve turnaround time and lower part costs. If you have dismissed 3D printing in the past, it might be time to take another look.

Come join us for a unique way to celebrate St. Patrick's Day, next Friday, March 17...

Lunch Meeting
  
The Current and Future State of Advanced and Additive Manufacturing

Advanced and Additive Manufacturing (AM) has seen an explosion in investment, growth, and development in the last decade. For metals alone, AM means a shift from mold-based component concepts and the constraints that go with them to rapid iteration, development of ideas with full geometric freedom. Advantages include faster processing times, lower-cost components, and a level of design freedom that is so far unheard of. The main forces behind this momentum include the automotive, medical technology, and aerospace industries. Come hear a short presentation on the current and future state of this amazing technology. 

Our Speaker: 
Kristofer Beem- Business Development Director. Kristofer has a degree in Entrepreneurial Business and is one of the first four members of RapidMade, Inc. He has a combination of ten years of sales and marketing experience in B2B and B2C environments. His working knowledge of 3D printing and additive technologies enable him to quickly work with clients in a collaborative manner. In the past five years, he has built a strong client base of almost 400, including several Fortune 500 clients, and globally renowned brands. 
 
What: The Current and Future State of Advanced and Additive Manufacturing When: Friday March 17th, 2017 11:30 – Doors open, Lunch – order from Sidebar menu 12:00 – 1:00 Presentation

Where: Sidebar – 3901 N. Williams Ave  

Cost:  Free entrance, order lunch off Sidebar menu RSVP: Space is limited. 

Posted
AuthorRenee Eaton