Congratulations to Innovarai and Madorra Medical who are among Portland Business Journal's 2017 Small Business & Innovation awardees!  Their achievements will be recognized and their products showcased on November 1st from 5:30 p.m. - 7:30 p.m. at the Portland Hilton Hotel.

Rapid prototyping and low-volume production, made possible through 3D printing (additive manufacturing), are lowering the barriers to entry for entrepreneurs and start ups.  These advanced manufacturing technologies lower costs, reduce lead times, and optimize designs, making product launches more affordable and timely.

RapidMade Accelerates Pace and Elevates Quality of Product Launch

Injection Molding Case Study

3D Printing, or Rapid Prototyping as it is also known, is a much faster and cost effective solution for testing and perfecting digital designs. Its ability to fabricate parts overnight without any direct labor, programming or tooling means 3D printing technologies carry many advantages over traditional technologies like injection molding for short turns and small-batch production.

 Sometimes 3D printing only goes so far when developing and manufacturing products in their early stages. In those instances, Rapid Injection Molding can take products to the finish line.

An American-made LED light bulb manufacturer engineered a version that was bigger and brighter than its competition.  The company quickly learned that RapidMade's injection molding expertise could test, validate and even manufacture its light bulbs in ways that 3D Printing simply could not match.

RapidMade accelerates the typical injection molding process by providing a short cut between prototyping and production tooling. After the rapid prototyping client finalizes its product for injection molding, RapidMade creates a cheaper and better solution by making pre-final tooling out of aluminum. This option allows customers get to market sooner than other injection mold processes and helps gain customer feedback to improve products. Getting a product to market sooner generates more revenue to invest in further product development and long-term tooling. 

 Material

Since the customer didn't know what the final material of the bulb should be, cutting the mold and testing multiple materials, including different grades of ABS and Polycarbonate, helped pinpoint the final material and even helped estimate eventual mass manufacturing costs. Additionally, electronics products must go through rigorous UL testing to ensure consumer safety before the product can be sold in stores.

Color and clarity are other traits vital to the lighting industry.  Because 3D printers must run manufacturing-grade material that is unadulterated, optimizing these characteristics can be difficult. With injection molding, however, one can custom blend different clear and opaque pigments with clear plastic to prototype different levels of clarity and color. So the company could test very specific color profiles to perfect its formula in the final product.

 Finish

Finish is extremely important when working with lighting, as well as other consumer products. A matte finish diffuses light at a very different rate than a polished one. Due to the layered nature, inherent in the 3D printing process, even the highest detail machines will have some level of surface striation. Additionally, most filament or powder technologies will have a very rough finish beyond the layer lines. Achieving custom finishes requires polishing, sanding, and painting of each individual unit, making it is extremely labor intensive and expensive.

Alternatively, injection molding shoots molten plastic into a cavity which picks up the texture of that cavity. That means one only needs to finish a mold once to get repetitive shots of that finish. And molds can be polished and textured to prototype a variety of finishes before settling on the desired one.

Volume

A light bulb is a relatively low-cost consumer good. These goods are meant to be sold in large volume at low cost. Tooling to produce those volumes inexpensively enough can take months to make and require high upfront investment. Many businesses are interested in small and medium-batch options that are more cost effective and higher quality than 3D printing to excite investors, test markets and stoke demand. 

 The company secured a prototyping option with relatively little upfront investment that served as a bridge tool to get actual product out into the marketplace. Aside from the aforementioned quality concerns, this could not have been cost effectively achieved with 3D printing; one cannot sell a light bulb where the housings cost $38 to the manufacturer. Creating large volumes of parts on a 3D Printer can also take much longer than injection molding, making it harder to fill orders. Injection Molding can really provide exceptional value to early-stage manufacturers when producing runs of hundreds or thousands of parts for low cost very quickly.

 

RapidMade's founders were recently interviewed by U.S. News and World for an article explaining how 3D printing, also known as additive manufacturing, has helped entrepreneurs innovate.

Here's an excerpt from the story which was published on line this week:

Renee and Mark Eaton, with their son Micah Chaban, founded RapidMade, a 3-D printing, manufacturing and engineering company, based in Portland, Oregon, in 2011. About to graduate from the University of Oregon, Chaban told his parents he was contemplating job searching in Germany. Living in England at the time, the Eatons had read an article in “The Economist” on 3-D printing and the idea for RapidMade was born.

’We had both worked in manufacturing for years and were disheartened that so many kids were gravitating to lower-paying service jobs because high-tech manufacturing jobs either weren’t well known or readily available,’ Renee Eaton, chief executive officer of RapidMade, wrote in an email.

’During our careers, we had both been forced to close or downsize plants and relocate production, so we wanted very much to bring back manufacturing. We thought Additive Manufacturing (3D printing) was a great local and sustainable way to do that.’

She explained that entrepreneurs can develop and evaluate a design in little time with rapid prototyping and that by using 3-D printing to create tools, they can decrease lead times and cost. Most of RapidMade’s customers are new to 3-D printing, and the company’s engineers can help determine the best technology to create a product from a design, she wrote.

Injection molds shouldn't take months to get...

  • Production Quotes in 1 - 3 Business Days. Tooling and Samples in 5 Weeks or Less.
  • Design, Engineer, Prototype and Manufacture All in One Place.
  • Full Expedited Production Orders in 4 Weeks or Less.
  • Get the Best Price and Quality Plastic Parts With RapidMade.

RapidMade Advantages Include:

  • Design and production for embedded stock and custom components including: Circuit boards, lights, mechanical components, clear windows and magnifiers, locks, springs, fasteners, and much more.
  • Extensive experience prototyping and testing precise mechanical assemblies.
  • In house assembly for complicated projects.
  • One stop design, prototyping and manufacture limits exposure to risk between suppliers.
  • Streamlined development brings your product to market faster.
  • Iterative testing with customer approval every step of the way ensures you get the product you envisioned.
  • Hundreds of available mold finishes and textures.
  • Wide range of standard plastics options including ABS, Polycarbonate, Nylon, Polyethylene, Polypropylene and composites. Custom plastics available on request.
  • Over 70 years of engineering and manufacturing experience will exceed your expectations.

Come see RapidMade at PSU's Business Accelerator Company 11th Annual Showcase.  We are officially graduating from the program tonight, Monday, May 18 at 5:15!

Here's the agenda:

Doors at 4pm
Pitch group 1:  4:30pm
Pitch Group 2 & Company Awards: 5:15pm
Pitch Group 3: 6:00pm

BY THE NUMBERS

17.4 million: Jobs supported by manufacturing in the United States

12: The percentage of manufacturing in the nation's GDP

$77,000: The average salary of manufacturing workers

$60,000: The average salary of entry-level manufacturing engineers

17: The percent of Americans who view manufacturing as a viable career choice

Source: National Institute of Standards and Technology, courtesy of Orange Count Register

My parents and brothers own a small box-making plant in Pittsburgh. When I was young, we would play in the scrap piles, sweep the floors, and do odd jobs to pass the time while our parents worked.  Because of this unique experience - and because Pittsburgh was a major steel producer - I knew that manufacturing was a good career choice - if you could get the work.  Unfortunately, it earned a bad reputation in the 70s, 80s, and 90s as more companies offshored and consolidated their production facilities.  I myself left the field to teach when I had to oversee Nabisco's Pittsburgh plant closing.

This experience is one reason I'm very excited about Additive Manufacturing (3D printing).  It uses advanced technology, requires high-skilled labor and conserves raw materials... things I hope will attract another generation of U.S. makers... but first, this generation will need to learn the skills required to design, scan and make 3D printed prototypes, parts, tools and models. Increasingly, schools, like some in Orange County, recognize the importance of ensuring enough workers have those skills.

According to Orange County Register reporter Tomoya Shamira, the Dean of the UC Irvine School of Engineering Dr. George Washington describes his students' experiences,

"Students at UCI receive training in a host of additive manufacturing technologies such as selective laser sintering and stereolithography."  

And this is fueling an interest in manufacturing... 

"CI engineering professor Marc Madou said 3D printing is helping young people become interested in manufacturing, partly because they can turn their design into a physical model quickly."

But not all jobs will require an engineering degree which highlights the need to partner with local community colleges as well...

"While advanced technologies are changing the manufacturing landscape, there’s growing demand for experienced welders and machinists as U.S. companies are bringing their manufacturing back home. Two-thirds of manufacturers said they couldn’t find qualified workers, according to a survey conducted by the Manufacturing Institute and Deloitte Consulting."